Academic Calendar - 2018

Western University Academic Calendar. - 2018

Courses


Course Numbering

0001-0999* Pre-University level introductory courses
1000-1999 Year 1 courses
2000-4999 Senior-level undergraduate courses
5000-5999 Professional Degree courses in Dentistry, Education, Law, Medicine and Theology (MTS, MDiv)
6000-6999 Courses offered by Continuing Studies
9000-9999 Graduate Studies courses

* These courses are equivalent to pre-university introductory courses and may be counted for credit in the student's record, unless these courses were taken in a preliminary year. They may not be counted toward essay or breadth requirements, or used to meet modular admission requirements unless it is explicitly stated in the Senate-approved outline of the module.


Suffixes

no suffix 1.0 course not designated as an essay course
A 0.5 course offered in first term
B 0.5 course offered in second term
A/B 0.5 course offered in first and/or second term
E 1.0 essay course
F 0.5 essay course offered in first term
G 0.5 essay course offered in second term
F/G 0.5 essay course offered in first and/or second term
H 1.0 accelerated course (8 weeks)
J 1.0 accelerated course (6 weeks)
K 0.75 course
L 0.5 graduate course offered in summer term (May - August)
Q/R/S/T 0.25 course offered within a regular session
U 0.25 course offered in other than a regular session
W/X 1.0 accelerated course (full course offered in one term)
Y 0.5 course offered in other than a regular session
Z 0.5 essay course offered in other than a regular session

Glossary


Prerequisite

A course that must be successfully completed prior to registration for credit in the desired course.


Corequisite

A course that must be taken concurrently with (or prior to registration in) the desired course.


Antirequisite

Courses that overlap sufficiently in course content that both cannot be taken for credit.


Essay Courses

Many courses at Western have a significant writing component. To recognize student achievement, a number of such courses have been designated as essay courses and will be identified on the student's record (E essay full course; F/G/Z essay half-course).


Principal Courses

A first year course that is listed by a department offering a module as a requirement for admission to the module. For admission to an Honors Specialization module or Double Major modules in an Honors Bachelor degree, at least 3.0 courses will be considered principal courses.



Campus





Course Level






Course Type




Applied Mathematics


Applications of integration, integration using mathematical software packages. Scaling and allometry. Basic probability theory. Fundamentals of linear algebra: vectors, matrices, matrix algebra. Difference and differential equations. Each topic will be illustrated by examples and applications from the biological sciences, such as population growth, predator-prey dynamics, age-structured populations.

Prerequisite(s): One or more of Calculus 1000A/B, Calculus 1500A/B or Mathematics 1225A/B.

Extra Information: 3 lecture hours, 1 tutorial hour.

Course Weight: 0.50
More details
Return to top
Matrix operations, systems of linear equations, linear spaces and transformations, determinants, eigenvalues and eigenvectors, applications of interest to Engineers including diagonalization of matrices, quadratic forms, orthogonal transformations; introduction to MATLAB with applications from linear algebra.

Antirequisite(s): Mathematics 1600A/B.

Prerequisite(s): Ontario Secondary School MHF4U or MCV4U, or Mathematics 0110A/B.

Extra Information: 3 lecture hours, 2 computer lab or tutorial hours. Restricted to students in the Faculty of Engineering.

Course Weight: 0.50
More details
Return to top
Limits, continuity, differentiation of functions of one variable with applications, extreme values, integration, the fundamental theorem of calculus, methods and applications of integration to areas, volumes and engineering applications. Sequences and series, convergence, power series. Vector functions, partial differential calculus, gradients, directional derivatives and applications.


Prerequisite(s): One or more of Ontario Secondary School MHF4U, MCV4U, or Mathematics 0110A/B.

Extra Information: 3 lecture hours, 1 tutorial hour. Applied Mathematics 1413 is a suitable prerequisite for any course which lists Calculus 1000A/B plus Calculus 1501A/B. Restricted to students in the Faculty of Engineering.

Course Weight: 1.00
More details
Return to top
Behind the polished presentations of most mathematical results there often lie dramatically powerful experimental methods. Modern computational tools have vastly increased the effectiveness of this approach. This course provides tools and opportunities for experiment and the discovery of new mathematics. The best projects from this course will be published.


Extra Information: 2 lecture hours, 2 computer lab hours.

Course Weight: 0.50
More details
Return to top
Topics include first order ODE's of various types, higher order ODE's and methods of solving them, initial and boundary value problems, applications to mass-spring systems and electrical RLC circuits, Laplace transforms and their use for solving differential equations, systems of linear ODE's, orthogonal functions and Fourier.

Antirequisite(s): Applied Mathematics 2402A, the former Applied Mathematics 2411, the former Applied Mathematics 2413, the former Applied Mathematics 2415.


Extra Information: 3 lecture hours, 1 tutorial hour. Restricted to students in the Faculty of Engineering.

Course Weight: 0.50
More details
Return to top
Topics covered include a review of orthogonal expansions of functions and Fourier series and transforms, multiple integration with methods of evaluation in different systems of coordinates, vector fields, line integrals, surface and flux integrals, the Green, Gauss and Stokes theorems with applications.

Antirequisite(s): Calculus 2302A/B, Calculus 2303A/B, Calculus 2502A/B, Calculus 2503A/B, Applied Mathematics 2277A/B, the former Applied Mathematics 2411, the former Applied Mathematics 2413, the former Applied Mathematics 2415.

Prerequisite(s): Applied Mathematics 2270A/B.

Extra Information: 3 lecture hours, 1 tutorial hour. Restricted to students in the Faculty of Engineering.

Course Weight: 0.50
More details
Return to top
Topics covered include a review of orthogonal expansions of functions and Fourier series, partial differential equations and Fourier series solutions, boundary value problems, the wave, diffusion and Laplace equations, multiple integration with methods of evaluation in different systems of coordinates, vector fields, line integrals, surface and flux integrals, the Green, Gauss and Stokes theorems with applications.

Antirequisite(s): Calculus 2302A/B, Calculus 2303A/B, Calculus 2502A/B, Calculus 2503A/B, Applied Mathematics 2276A/B, the former Applied Mathematics 2411, the former Applied Mathematics 2413, the former Applied Mathematics 2415.

Prerequisite(s): Applied Mathematics 2270A/B.

Extra Information: 3 lecture hours, 1 tutorial hour. Restricted to students in the Faculty of Engineering.

Course Weight: 0.50
More details
Return to top
Introduction to first order differential equations, linear second and higher order differential equations with applications, complex numbers including Euler's formula, series solutions, Bessel and Legendre equations, existence and uniqueness, introduction to systems of linear differential equations.

Antirequisite(s): The former Differential Equations 2402A.

Prerequisite(s): A minimum mark of 60% in Calculus 1301A/B, or a minimum mark of 55% in Calculus 1501A/B or Applied Mathematics 1413. Pre-or Corequisite(s): Mathematics 1600A/B or the former Linear Algebra 1600A/B.

Extra Information: 3 lecture hours, 1 laboratory hour.

Course Weight: 0.50
More details
Return to top
Vector space examples. Inner products, orthogonal sets including Legendre polynomials, trigonometric functions, wavelets. Projections, least squares, normal equations, Fourier approximations. Eigenvalue problems, diagonalization, defective matrices. Coupled difference and differential equations; applications such as predator-prey, business competition, coupled oscillators. Singular value decomposition, image approximations. Linear transformations, graphics.

Prerequisite(s): Applied Mathematics 1413 or Calculus 1301A/B or Calculus 1501A/B and a minimum mark of 60% in Mathematics 1600A/B or the former Linear Algebra 1600A/B, or Applied Mathematics 1411A/B.

Extra Information: 3 lecture hours.

Course Weight: 0.50
More details
Return to top
Introduction to numerical analysis; polynomial interpolation, numerical integration, matrix computations, linear systems, nonlinear equations and optimization, the initial value problem. Assignments using a computer and the software package, Matlab, are an important component of this course.

Antirequisite(s): The former Applied Mathematics 2413, the former Applied Mathematics 2813B.

Prerequisite(s): A minimum mark of 55% in Mathematics 1600A/B or the former Linear Algebra 1600A/B. Pre-or Corequisite(s): Calculus 2302A/B, Calculus 2402A/B or Calculus 2502A/B.

Extra Information:3 lecture hours, 1 laboratory hour.

Course Weight: 0.50
More details
Return to top
This course provides students with the tools to tackle more complex problems than those covered in introductory mechanics. D'Alembert's principle, principle of least action, Lagrange's equations, Hamilton's equations, Poisson brackets, canonical transformations, central forces, rigid bodies, oscillations. Optional topics including: special relativity, Hamilton-Jacobi theory, constrained systems, field theory.

Antirequisite(s): Physics 3151A/B.

Prerequisite(s): Calculus 2503A/B, Mathematics 1600A/B or the former Linear Algebra 1600A/B, and one of either Physics 1301A/B and Physics 1302A/B, or Physics 1401A/B and Physics 1402A/B, or Physics 1501A/B and Physics 1502A/B, or the former Physics 1020, the former Physics 1024 or the former Physics 1026.

Extra Information: 3 lecture hours.

Course Weight: 0.50
More details
Return to top
Topics include: introduction to complex analysis; complex integration; Fourier series, integrals and transforms; boundary value problems; separation of variables; transform methods of solution for PDE's; applications to mechanical engineering.

Antirequisite(s): Applied Mathematics 3415A/B.

Prerequisite(s): Applied Mathematics 2270A/B and Applied Mathematics 2276A/B, or the former Applied Mathematics 2413.

Extra Information: 3 lecture hours. Restricted to students in the Faculty of Engineering.

Course Weight: 0.50
More details
Return to top
Topics Include: introduction to complex analysis; complex integration; boundary value problems; separation of variables; Fourier series and transform methods of solution for PDE's, applications to electrical engineering.

Antirequisite(s): Applied Mathematics 3413A/B.

Prerequisite(s): Applied Mathematics 2270A/B and 2276A/B, or the former Applied Mathematics 2415.

Extra Information: 3 lecture hours.

Course Weight: 0.50
More details
Return to top
Basic introduction to C++ and the concept of object-oriented programming techniques. Applications to scientific computation applied to numerical methods, linear algebra and differential equations. Grade is largely based on projects and presentations.

Antirequisite(s): The former Applied Mathematics 4611F/G.


Extra Information: 3 lecture hours. Offered in alternate years with Applied Mathematics 4615F/G.

Course Weight: 0.50
More details
Return to top
An introduction to mathematical biology. Case studies from neuroscience,immunology, medical imaging, cell biology, molecular evolution and ecology will give an overview of this diverse field, illustrating standard mathematical approaches such as compartmental analysis and evolutionary game theory.

Prerequisite(s): One of Calculus 2302A/B, Calculus 2402A/B, Calculus 2502A/B; plus one of Mathematics 1600A/B or the former Linear Algebra 1600A/B, or Applied Mathematics 1411A/B.

Extra Information: 3 lecture hours.

Course Weight: 0.50
More details
Return to top
Functions of a complex variable, analytic functions, integration in the complex plane, Taylor and Laurent series, analytic continuation, Cauchy's theorem, evaluation of integrals using residue theory, applications to Laplace transforms, conformal mapping and its applications.

Antirequisite(s): Mathematics 3124A/B.

Prerequisite(s): Calculus 2303A/B or Calculus 2503A/B.

Extra Information: 3 lecture hours.

Course Weight: 0.50
More details
Return to top
Existence and uniqueness of solutions, phase space, singular points, stability, periodic attractors, Poincaré-Bendixson theorem, examples from physics, biology and engineering, frequency (phase) locking, parametric resonance, Floquet theory, stability of periodic solutions, strange attractors and chaos, Lyapunov exponents, chaos in nature, fractals.

Prerequisite(s): Applied Mathematics 2402A or the former Differential Equations 2402A; Calculus 2303A/B or Calculus 2503A/B and Mathematics 1600A/B or the former Linear Algebra 1600A/B.

Extra Information: 3 lecture hours.

Course Weight: 0.50
More details
Return to top
Boundary value problems for Laplace, heat, and wave equations; derivation of equations; separation of variables; Fourier series; Sturm-Liouville Theory; eigenfunction expansions; cylindrical and spherical problems; Legendre and Bessel functions; spherical harmonics; Fourier and Laplace transforms.

Prerequisite(s): (i) Mathematics 1600A/B; Applied Mathematics 2402A; Calculus 2303A/B or Calculus 2503A/B; or (ii) Calculus 2402A/B and Statistical Sciences 2503A/B or the former Applied Mathematics 2503A/B. In each course a minimum mark of 60% is required.

Extra Information: 3 lecture hours.

Course Weight: 0.50
More details
Return to top
Basic principles of modelling and simulation, description and treatment of deterministic and random processes, computational methods and applications with emphasis on the use of computers. The course includes a major project.

Antirequisite(s): Physics 3926F/G.

Corequisite(s): Calculus 2303A/B or Calculus 2503A/B, or equivalent, and Applied Mathematics 2814F/G or the former Applied Mathematics 2813B or Statistical Sciences 2864A/B.

Extra Information: 3 lecture hours, 1 laboratory hour.

Course Weight: 0.50
More details
Return to top
Quantum mechanical description of angular momentum; Stern-Gehrlach experiment and electron spin; addition of angular momenta; full separation of variables treatment of the hydrogen atom Schrodinger equation; time independent non-degenerate and degenerate perturbation theory; fermions, antisymmetry, and the helium atom; time-dependent perturbation theory, Fermi golden rule, and radiative transitions.

Antirequisite(s): Physics 4251A/B.

Prerequisite(s): Physics 3200A/B.

Extra Information: 3 lecture hours. May be offered in alternate years.

Course Weight: 0.50
More details
Return to top
Static fields (Green's functions); time varying fields; Maxwell's equations, conservation laws; non-relativistic motion of particle in static, uniform external fields; Rutherford scattering; plane waves; simple radiating systems; fields of a moving charge; relativistic formulation.

Antirequisite(s): Physics 4351A/B.

Prerequisite(s): Physics 3300A/B.

Extra Information: 3 lecture hours. May be offered in alternate years.

Course Weight: 0.50
More details
Return to top
Phenomenology; conservation laws and invariance principles; analysis of reactions and decays; the identification of particles; the particle spectrum; unitary symmetry; quarks; models of strong interaction dynamics.

Prerequisite(s): Permission of the Department.

Extra Information: 3 lecture hours, May be offered in alternate years.

Course Weight: 0.50
More details
Return to top
Variational principles, methods of approximation, basis functions, convergence of approximations, solution of steady state problems, solution of time-dependent problems. Each student will be required to complete two major computational projects.

Prerequisite(s): Applied Mathematics 2814F/G or the former Applied Mathematics 2813B. Corequisite(s): Applied Mathematics 3815A/B or equivalent.

Extra Information: 3 lecture hours. Offered in alternate years with Applied Mathematics 4617A/B.

Course Weight: 0.50
More details
Return to top
Strengths and limitations of computer algebra systems (CAS); complexity of exact computations versus possible instability of numerical computations; selecta from Groebner bases, resultants, fractional derivatives, Risch integration algorithm, special functions including the Lambert W function. The emphasis is on preparing the student to use CAS in mathematics, science, and engineering.

Prerequisite(s): Applied Mathematics 2814F/G or the former Applied Mathematics 2413, the former Applied Mathematics 2415 or the former Applied Mathematics 2813B.

Extra Information: 3 lecture hours.

Course Weight: 0.50
More details
Return to top
Finite difference methods, stability analysis for time-dependent problems.

Prerequisite(s): Applied Mathematics 2814F/G or the former Applied Mathematics 2413 or the former Applied Mathematics 2813A/B. Pre-or Corequisite(s): Applied Mathematics 3413A/B, Applied Mathematics 3415A/B or Applied Mathematics 3815A/B.

Extra Information: 3 lecture hours. Offered in alternate years with Applied Mathematics 4613A/B.

Course Weight: 0.50
More details
Return to top
Boundary value problems for Laplace and Helmholtz equations, initial value problems for heat and wave equations, in one to three dimensions; Green's functions in bounded and unbounded domains; Method of Images.

Prerequisite(s): Applied Mathematics 3815A/B.

Extra Information: 3 lecture hours.May be offered in alternate years.

Course Weight: 0.50
More details
Return to top
Fourier, Laplace and Hankel transforms with applications to partial differential equations; integral equations; and signal processing and imaging; asymptotic methods with application to integrals and differential equations.

Prerequisite(s): Applied Mathematics 3815A/B. Pre-or Corequisite(s): Applied Mathematics 3811A/B.

Extra Information: 3 lecture hours. May be offered in alternate years.

Course Weight: 0.50
More details
Return to top
The student will work on a project under faculty supervision. The project may involve an extension, or more detailed coverage, of material presented in other courses. Credit for the course will involve a written as well as oral presentation.

Prerequisite(s): Registration in the fourth year of a program in Applied Mathematics.

Course Weight: 0.50
More details
Return to top