Professional Degree courses in Dentistry, Education, Law, Medicine and Theology (MTS, MDiv)
6000-6999
Courses offered by Continuing Studies
9000-9999
Graduate Studies courses
* These courses are equivalent to pre-university introductory courses and may be counted for credit in the student's record, unless these courses were taken in a preliminary year. They may not be counted toward essay or breadth requirements, or used to meet modular admission requirements unless it is explicitly stated in the Senate-approved outline of the module.
Suffixes
no suffix
1.0 course not designated as an essay course
A
0.5 course offered in first term
B
0.5 course offered in second term
A/B
0.5 course offered in first and/or second term
E
1.0 essay course
F
0.5 essay course offered in first term
G
0.5 essay course offered in second term
F/G
0.5 essay course offered in first and/or second term
H
1.0 accelerated course (8 weeks)
J
1.0 accelerated course (6 weeks)
K
0.75 course
L
0.5 graduate course offered in summer term (May - August)
Q/R/S/T
0.25 course offered within a regular session
U
0.25 course offered in other than a regular session
W/X
1.0 accelerated course (full course offered in one term)
Y
0.5 course offered in other than a regular session
Z
0.5 essay course offered in other than a regular session
Glossary
Prerequisite
A course that must be successfully completed prior to registration for credit in the desired course.
Corequisite
A course that must be taken concurrently with (or prior to registration in) the desired course.
Antirequisite
Courses that overlap sufficiently in course content that both cannot be taken for credit.
Essay Courses
Many courses at Western have a significant writing component. To recognize student achievement, a number of such courses have been designated as essay courses and will be identified on the student's record (E essay full course; F/G/Z essay half-course).
Principal Courses
A first year course that is listed by a department offering a module as a requirement for admission to the module. For admission to an Honours Specialization module or Double Major modules in an Honours Bachelor degree, at least 3.0 courses will be considered principal courses.
This course will provide mechatronic system engineering undergraduate students with uniform training in the safe use of Engineering student shops.
Antirequisite(s):MME 2200Q/R/S/T.
Extra information: Non-credit course. Restricted to students enrolled in the Mechatronic Systems Engineering program.
This course will provide mechatronic system engineering undergraduate students with uniform training in the safe use of Engineering student shops.
Antirequisite(s):MME 2200Q/R/S/T.
Extra information: Non-credit course. Restricted to students enrolled in the Mechatronic Systems Engineering program.
Introduction to instrumentation and basic electronics; Laboratory experiments associated with ECE 2205A/B, as well as laboratory experiments in instrumentation and measurement; review of laboratory practice, health and safety issues, simulation software, data collecting methods; errors and their calculus; accuracy; averaging, signal conditioning, and data interpolation.
Introduction to instrumentation and basic electronics; Laboratory experiments associated with ECE 2205A/B, as well as laboratory experiments in instrumentation and measurement; review of laboratory practice, health and safety issues, simulation software, data collecting methods; errors and their calculus; accuracy; averaging, signal conditioning, and data interpolation.
Introduces engineering design and structured design methods from the perspective of mechatronic systems that integrate mechanical, electrical and control technologies. Topics include the mechatronic design process, simple sensors and actuators, heat management, electronic communications and microcontroller-based software design.
Introduces engineering design and structured design methods from the perspective of mechatronic systems that integrate mechanical, electrical and control technologies. Topics include the mechatronic design process, simple sensors and actuators, heat management, electronic communications and microcontroller-based software design.
Stress and strain, Mohr's stress circle, behaviour of structures, axial loading of columns and struts, torsion of shafts, bending of beams, buckling of columns and combined loading of components.
Stress and strain, Mohr's stress circle, behaviour of structures, axial loading of columns and struts, torsion of shafts, bending of beams, buckling of columns and combined loading of components.
Topics include: rectilinear, angular and curvilinear motion; kinetics of a particle, a translating rigid body and a rigid body in pure rotation; definitions of different energies and energy balance: power and efficiency; and linear impulse and momentum.
Topics include: rectilinear, angular and curvilinear motion; kinetics of a particle, a translating rigid body and a rigid body in pure rotation; definitions of different energies and energy balance: power and efficiency; and linear impulse and momentum.
Properties of a pure substance, first law of thermodynamics, processes in open and closed systems, second law of thermodynamics; ideal gases, compressors and energy conversion systems.
Properties of a pure substance, first law of thermodynamics, processes in open and closed systems, second law of thermodynamics; ideal gases, compressors and energy conversion systems.
Introduction to a system level analysis of electrical circuits. The S-Plane and frequency response of circuits, frequency selective circuits, state variables, introduction to Fourier analysis, Fourier transform and Laplace transform techniques. Transfer functions and system functions.
Prerequisite(s):NMM 2270A/B or the former Applied Mathematics 2270A/B, ECE 2205A/B.
Pre-or Corequisite(s):NMM 2276A/B or the former Applied Mathematics 2276A/B.
Extra Information: 3 lecture hours, 2 tutorial hours, 1 laboratory hour.
Restricted to students enrolled in the Mechatronic Systems Engineering program or in Computer Engineering Option B.
Introduction to a system level analysis of electrical circuits. The S-Plane and frequency response of circuits, frequency selective circuits, state variables, introduction to Fourier analysis, Fourier transform and Laplace transform techniques. Transfer functions and system functions.
Prerequisite(s):NMM 2270A/B or the former Applied Mathematics 2270A/B, ECE 2205A/B.
Pre-or Corequisite(s):NMM 2276A/B or the former Applied Mathematics 2276A/B.
Extra Information: 3 lecture hours, 2 tutorial hours, 1 laboratory hour.
Restricted to students enrolled in the Mechatronic Systems Engineering program or in Computer Engineering Option B.
An introduction to fluid mechanics and heat transfer. The fluid mechanics covers fluid properties, fluid statics including buoyancy and stability, one-dimensional fluid dynamics including conservation of mass and energy and losses in pipe networks. Heat transfer covers development of the general energy equation for three dimensions and steady-state conduction in one and two dimensions.
An introduction to fluid mechanics and heat transfer. The fluid mechanics covers fluid properties, fluid statics including buoyancy and stability, one-dimensional fluid dynamics including conservation of mass and energy and losses in pipe networks. Heat transfer covers development of the general energy equation for three dimensions and steady-state conduction in one and two dimensions.
Fundamentals of shaping and strengthening materials used in mechatronics components. Material selection based on the composite properties of an application. Smart material fabrication and application to modern mechatronic devices.
Fundamentals of shaping and strengthening materials used in mechatronics components. Material selection based on the composite properties of an application. Smart material fabrication and application to modern mechatronic devices.
In this course, students are introduced to advanced concepts in sensing and actuation for mechatronic systems, including both traditional sensors and actuators an introduction to advanced topics in micro electromechanical system (MEMS) sensing, and smart materials.
In this course, students are introduced to advanced concepts in sensing and actuation for mechatronic systems, including both traditional sensors and actuators an introduction to advanced topics in micro electromechanical system (MEMS) sensing, and smart materials.
Overview of the fundamental principles related to the operation of DC and AC motors, the associated power electronic converters and drives. Emphasis will be placed on the design and integration of these devices into mechatronic systems.
Overview of the fundamental principles related to the operation of DC and AC motors, the associated power electronic converters and drives. Emphasis will be placed on the design and integration of these devices into mechatronic systems.
Overview of the finite element method (FEM) and its use to solve general problems in 2-D and 3-D. Applications include structural mechanics, heat transfer, thermal stress, electromagnetism and radiation. Methods and applications of optimization in support of engineering design are also introduced.
Overview of the finite element method (FEM) and its use to solve general problems in 2-D and 3-D. Applications include structural mechanics, heat transfer, thermal stress, electromagnetism and radiation. Methods and applications of optimization in support of engineering design are also introduced.
This course investigates the stress analysis, design, and selection of various mechanical components typically employed in mechatronic systems. Topics include advanced solid modeling, failure theory, and the analysis and design of gearing, shafts, bearings and fasteners.
This course investigates the stress analysis, design, and selection of various mechanical components typically employed in mechatronic systems. Topics include advanced solid modeling, failure theory, and the analysis and design of gearing, shafts, bearings and fasteners.
Displacement, velocity and acceleration analysis of linkages; static and dynamic force analysis of mechanisms; balancing of reciprocating and rotating masses; special-purpose joints and mechanisms.
Displacement, velocity and acceleration analysis of linkages; static and dynamic force analysis of mechanisms; balancing of reciprocating and rotating masses; special-purpose joints and mechanisms.
Introduces the basic principles and techniques involved in modeling, simulating and controlling rigid-link manipulators. Forward and inverse kinematics. Manipulator dynamics. Control of robot manipulators.
Introduces the basic principles and techniques involved in modeling, simulating and controlling rigid-link manipulators. Forward and inverse kinematics. Manipulator dynamics. Control of robot manipulators.
The aim of the course is to develop and practice the interdisciplinary skills required to solve open-ended engineering design problems from a mechatronics perspective. Students will experience all phases of the design process, including: problem definition, generation and evaluation of concepts, engineering analysis and testing, and preparation of design documentation. Project management and communications skills will also be emphasized. A faculty advisor will supervise project teams and an interdisciplinary committee comprised of Mechatronics program faculty members will assess project outcomes.
The aim of the course is to develop and practice the interdisciplinary skills required to solve open-ended engineering design problems from a mechatronics perspective. Students will experience all phases of the design process, including: problem definition, generation and evaluation of concepts, engineering analysis and testing, and preparation of design documentation. Project management and communications skills will also be emphasized. A faculty advisor will supervise project teams and an interdisciplinary committee comprised of Mechatronics program faculty members will assess project outcomes.